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Foreword

Periodic phenomona in biology and climatology occur so widely that we

tend either to adapt to them as unavoidable nuisances or are overimpressed

by their day to day deviations. We can't "see the forest for the trees." If

the variable occurs around the clock or through the year, but with system-

atically unequal magnitudes, its underlying pattern can often be expressed

logically in relatively simple trigonometric terms. When this classic math-

ematical model is combined with an appropriate statistical analysis, we are

better able both to describe the periodic trend and to study deviations from

its pattern. For example we can separate weather into its orderly and its

random elements and by this means estimate the probability of occurrence

of critical temperatures. This approach is sufficiently novel, even to biolo-

gists and climatologists with a background in modern statistics, that the

technique is described here in some detail. Its applications are illustrated

with a wide range of biological examples and a more detailed study of a

typical climatological series.



Periodic Regression

in Biology and Climatology

C. I. BUss

Most non-linear regressions in biology and many in climatology are handled

in one of two ways. The first is to convert the relation to a straight line by

the selection, on either theoretical or empirical grounds, of a suitable unit

for each variable, such as its reciprocal, logarithm, probit or logit. A sec-

ond approach is to fit a polynomial equation relating the dependent variable

y to successive functions of the independent variable x. In one familiar

form, these functions are the powers of x, leading to an equation of the

form

Y rrz a + bix + box- + bax^ + - • • + b^x"^ (1)

Given k -f 1 values of our independent variable, the curve defined by this

equation will fit exactly the mean responses yj at each x, if extended to k

powers of x. In practice, we terminate the series as soon as the residual

variation of y; about the fitted curve is comparable with the variation of

the individual y's about their respective means.

When the relation between x and y is periodic, our polynominal equation

will be more rational if we substitute trigonometric functions of x for their

powers, leading to harmonic or Fourier analysis, or "periodic regression"

as it is termed by Aitken (1939). The problem is further simplified when
the independent variable x is cyclical in character with a length fixed in-

dependendy of the response. Typical variables include the hour of day in

the diurnal cycle, the month or week in the annual cycle, and the compass

direction in dispersion from a center. We are not concerned here with

cycles determined a posteriori, such as from fluctuations in the abundance

of animals or of plant pests, nor with "cycles" which represent an age trend

in a single group of individuals, such as the monthly egg production from

3
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a single set of pullets through the year. We will further assume that each
of the equally-spaced subdivisions in the cycle is represented by a constant

number of observations. Within these restrictions, periodic regression par-

allels the more familiar curvilinear regression in which the orthogonal poly-
nomials represent the successive powers of x.

The Sine Curve

Many periodic biological functions can be fitted by the symmetrical sine

curve. We start with f values of our dependent variable y at each of k
observed times t (or other interval) within the cycle. The expected response

Y at each t may then be computed from the sine curve, expressed con-

veniently in the form

Y = a,, + A cos(ct - 0) (2)

where a,, = y is the mean response over f complete periods or cycles. The
coefficient A is the semi-amphtude or one-half the range from the maxi-

mum to the minimum Y. The constant c = l-w/k. converts the numbered
units of time, t = 0, 1,2,..., k-1, in a single cycle to angular measure in

radians. The statistic is the phase angle or the time in angular measure

of the maximum response Y. It shifts the origin for measuring time from

an arbitrary starting point t^ to the time at which the response is a maxi-

mum. The angles could be measured equally in degrees instead of in

^ ke/2Tr -

/ /V

!^ -. 211 Radians /
- /

\ /

\ /\ /
1 1

1
1

^
1

7 II 15 19

Time t for k=24 Intervals per Cycle

Figure 1. The sine curve and its constants.
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Periodic Regression 5

radians, but radians have been selected here as the more convenient. One
complete cycle of 360'' = Itt = 6.283185 radians. These various func-

tions of the sine curve are shown graphically in Figure 1

.

For estimating its constants from the observed responses, we may re-

write Equation 2 as

Y = a,, + a:Cos(ct) + b,sin(ct) (3)

an equation linear in the adjustable parameters ai and b,, where

A = Var + br (4)

and tan 8 r= b]/ai (5)

The expected response Y for a given t can be computed directly from

Equation 3 without conversion to the original form. The range in units

of y is equal to twice the semi-amplitude or 2A. To determine the correct

Figure 2. Conversion of B' = |bi/ai| to the phase angle B.
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Table 1. Cosines (ui) and sines (vi) for the harmonic analysis of cycHcal data recorded in

k equally-spaced fractions per cycle and numbered consecutively from t = Otot = k— 1.

7 k = 24

t Ui Vi Uj V:; U3 V3

1 1 1

1 .6235 .7818 -.2225 .9749 -.9010 .4339

2 -.2225 .9749 -.9010 -.4339 .6235 -.7818

3 -.9010 .4339 .6235 -.7818 -.2225 .9749

4 -.9010 -.4339 .6235 .7818 -.2225 - .9749

5 -.2225 -.9749 -.9010 .4339 .6235 .7818

6 .6235 -.7818 -.2225 -.9749 -.9010 -.4339

k =

Ui Vi

1

.707

-.707

-1
.707

.707

.707

1

.707

-.707

-1
-.707

U2 V-j

1

1

1

-1
1

1

1

-1

U3 Vs U

1

.707 .707 — 1

-1
707 .707 — 1

-1

707 —.707 — 1

1

707 -.707 — 1

k = 12

t Ui Vi U- V2 U,. V3 U4 'V4

1 1 1

1 .866 .5 .5 .866 -.5 .866

2 .5 .866 -.5 .866 — 1 -.5 -.866

3 1 -1 — 1 1

4 -.5 .866 -.5 -.866 -.5 .866

5 -.866 .5 .5 -.866 -.5 -.866

6 -1 1 — 1 1

7 -.866 -.5 .5 .866 — 1 -.5 .866

8 -.5 -.866 -.5 .866 -.5 -.866

9 -1 -1
1

10 .5 -.866 -.5 -.866 — 1 -.5 .866

11 .866 -.5 .5 -.866 — 1 -.5 -.866

t Ui Vi U, V-

1 1

1 .966 .259 .866 .5

2 .866 .5 .5 .866

3 .707 .707 1

4 .5 .866 -.5 .866

5 .259 .966 -.866 .5

6 1 -1

7 -.259 .966 -.866 -
.5

8 -.5 .866 -.5 - .866

9 -.707 .707 -1

10 -.866 .5 .5 - .866

11 -.966 .259 .866 -
.5

12 -1 1

13 -.966 - .259 .866 .5

14 -.866 -
.5 .5 .866

15 -.707 - .707 1

16 -.5 - .866 -.5 .866

17 -.259 - .966 -.866 .5

18 -1 -1

19 .259 - .966 -.866 -
.5

20 .5 - .866 -.5 - .866

21 .707 - .707 -1

22 .866 -
.5 .5 - .866

23 .966 - .259 .866 -
.5

For t = 0-11 and 12-23:

U-,Vl. == Ui,V . (k=12)
U4,V4 = U2,V (k=12)

For t = 0-7, 8-15, 16-23:

U3,V3 = Ui,Vi (k= 8)

For k = 4: u,,v, = u.,v. (k= 8, t = 0-3)

Fork = 6: u,,v, = u.,v. (k=l2, t= 0-5; u.,v. = u,,v, (k = 12, t = 0-5)



Periodic Regression 7

quadrant for the phase angle 6, we first determine from a table of trigo-

nometric functions the angle in radians corresponding to tan 6' = |bi/ai|,

and from the signs of the coefficients ai and bi convert 6' to the phase angle

6 by Figure 2 (Brooks and Carruthers, 1953). Then on the time scale

measured from t^^, the maximum response occurs at the time kO/l-w. Since

the sine curve is symmetrical, the time for the minimum is one-half cycle

before or after the time of the maximum.

For any selected series of k equally-spaced intervals in each complete

cycle, the cosines and sines corresponding to the successive intervals of

t = 0, 1, 2, . . . k-1 are listed in the columns for Ui and Vi in Table 1.

Each forms an orthogonal set of independent variates (within a negligible

rounding error) similar to the orthogonal polynomials for the successive

powers of x. With Ui = cos(ct) and Vi = sin(ct), Equation 3 may be

written as

Y = a^ + aiU: + biVi (6)

where 2ui = 2vi r= 2(uiVi) m 0. The cosines and sines in Table 1 cover

the series encountered most commonly and include the higher harmonics

required for the Fourier analysis in the next section. Except for rounding

errors, which usually may be neglected, the denominator of ai and

of bi is the same for all evenly-spaced series of the same length k, or

Sui" = 2vi^ =^ ^k. With this short-cut, the regression coefficients for a

single measure at each time t (f = 1) are readily computed as

ai = 2(uiy)/2ui- = [uiyj/^k

(7)

and bi = 2(viy)/2vi^ = [viy]/^k

With f replicated y's at each t, totalling Tt, the regression coefficients are

computed directly from the Tt's as

ai = 2(uiTt)/f2ui-^ = [uiTt]/ifk

(8)

and bi = 2(viTt)/f2vi^ = [viTt]/^fk

As an example of simple periodic regression, we may fit a sine curve

to the monthly mean temperatures in New Haven (Table 2), for the 14

years from July 1943, when the Weather Bureau station was moved to its

present location at the municipal airport, through June 1957. The totals Tt

in the last row of Table 2 were multiplied by the variates Ui and Vi in

Table 1 for k = 12 to obtain by Equation 8 the regression coefficients

ai = 1763.0944/84 = 20.9892 and bi = 292.7604/84 = 3.4852. With

these coefficients and the mean, a^ = 8528.6/168 = 50.7655, the expected

Y for each month has been computed by Equation 6 and the corresponding

variates Ui and v, in Table 1. The Y's have been plotted as the curve in

Figure 3, together with the observed monthly means \\. In this as in most
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other figures the first few months have been repeated at the end, so as to

emphasize the cychc character of the relation. Inspection indicates a good

fit; how good we will test more fully in a later section.

From these records the seasonal range or amplitude in the mean tem-

perature at New Haven is 2A = 2V20.9892- + 3.4852- = 42.553 °F as

estimated from the sine curve by Equation 4. To determine the time of the

maximum (Equation 5), we may compute tan 6' = 3.4852/20.9892 =
0.16605 and from a trigonometric table, interpolate the angle B' corres-

ponding to this tangent. With both ai and bi positive, 6 falls in the first

quadrant (Figure 2), so that r= (/ =z 0.16455 radians and the maximum
temperature is reached at 12 d/lir = 1.9746/6.2832 = 0.3143 months

from our starting point (tj in the annual cycle. Since t„ corresponds to mid-

July, this places the maximum temperature in New Haven approxi-

mately at July 25 over these 14 years and the minimum six months later

on January 24. These estimates, of course, are subject to sampling errors

which will be considered in a later section. Apart from their intrinsic in-

terest, they permit rewriting the prediction equation in Equation 6 in the

form of Equation 2, if this is preferred, as

Y = 50.765° + 21.2766 cos(0.5236t - 0.16455)

where t is the number of the month (Table 1).

80|

20

I

Minimum

I I I I I I I I I I I I I I IASONDJFMAMJJASON
Month

Figure 3. Monthly mean temperatures from Table 2 fitted with a sine curve.
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The Fourier Series

The plotted means may not define as symmetrical a relation as the sine

curve. By Fourier analysis we can add the higher harmonics, corresponding

to 2, 3, 4 or more complete cycles in the basic interval covered by one

cycle of the sine curve. If we add enough terms the computed curve will

fit any observed series exactly, but the equation then has little meaning

either biologically or climatologically. Our objective is to add no more

terms than are needed to reduce the variance from the scatter of yt's about

the fitted line to the same magnitude as the residual error. We may stop

well short of this if the scatter seems essentially random even though its

variance is significantly larger than the residual variation.

The sine curve in Equation 6 is extended with additional terms to

Y =r a„ + aiUi -\- biVi + aou^ + b.v. + asUa + h-sW-s + . . . (9)

where U2 = cos(2ct), Vo = sin(2ct), U3 = cos(3ct), V3 = sin(3ct), etc. and

each pair of coefficients ai and bi is computed with Equations 7 or 8, re-

placing Ui and Vi by u, and v, for i = 1, 2, 3 . . . successively. The Ui's and

Vi's convert the scale of t to orthogonal units in which 2(UiVi) = 2(UiUj) =
2(ViVj) = where i v^ j. There is the additional advantage that for any

given k, ^Ui^ = 2Vi- = 1 k for all values of i, except the last term where

k is even and then 2ur = k. The values of u, and Vi for the first terms of

the Fourier series are given in Table 1 for k = 4, 6, 7, 8, 12 and 24 sub-

divisions per cycle.

A seasonal trend which is not a simple sine curve occurs in the iodine

value of butterfat at five stations in central Alberta, Canada, as reported

by Wood (1956). Each entry in Appendix Table 1 represents duplicate

analyses of the weekly samples of butter in each month for two years be-

ginning in April 1952, or an average of 17.3 determinations. Both the

annual total for each station and the month with the peak reading tended

to shift in going south from Edmonton to Calgary. According to Wood,

the monthly readings in the two years, which have been averaged, did not

differ significantly. Although a shift in the phase angle from one location

to another accounts for part of the complexity of the average curve, the

iodine values for each location could not be fitted adequately with a

separate sine curve.

From the sums of products of Tt with the cosines (ui) and sines (Vj) in

Table 1 for the first three harmonics, the seasonal trend of the means in

the upper part of Figure 4 is reproduced quite faithfully by the equation:

Y = 36.955 + 0.409 hit + 1.7318v, + 0.0700u2 - 0.5542vo

+ 0.2233uh + 0.7467V3
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This curve is merely the overall mean, a„ = 36.955, plus the deviations

for each harmonic in each month, as the reader may verify from the last

three rows of Appendix Table 1. The Fourier terms have been plotted

separately in the lower part of Figure 4 as deviations from the mean a^,

where it is evident that they define successively 1, 2, and 3 complete cycles

within the year.

In the present case the biological implications of the successive har-

monics are by no means clear. Iodine values are indicative of the unsatu-

rated fatty acid content of butter and are expected to be high during the

grass feeding season in May. As noted by the author, the peak in August

and September, most pronounced in the North and decreasing southward,

was unexpected. Although the biological information gained in fitting a

Fourier series is here questionable, the example has served its primary

purpose of demonstrating that an apparently irregular curve can be fitted

by harmonic analysis with a limited number of constants.

40

cT-N,

36

34 -

Three- term

Fourier Curve

Component Cycles

A S N D

Month

Figure 4. Mean monthly iodine values for butterfat from Appendix Table 1.

The sum of the deviations in the lower three curves, added to the mean (ao),

yields the three-term Fourier curve in the upper diagram.



12 Connecticut Experiment Station Bulletin 615

Analysis of Variance

The analysis of variance has the same function in periodic regression

as in many other regression problems. The variation in y about the fitted

curve is assumed to be normally distributed, equally variable over the

length of the cycle, and with deviations independent of each other. The
selection of a suitable transform may aid materially in achieving these

objectives, as we shall see in a later section. A more troublesome problem

is the potential dependence between successive observations through a

cycle. Despite the formal analogy of a cross-classification to randomized

blocks, the responses in each row represent an ordered sequence rather

than an arrangement upon which treatments have been superimposed at

random.

One approach is to fit a Fourier series to the column means and com-

pute a serial correlation coefficient from the successive residuals, as de-

scribed by Anderson and Anderson (1950). In a time sequence, such as

of weather records or of attack rates by a contagious disease, these cor-

relations are often significant. An alternative approach, more consonant

with the analysis of variance, is to fit a separate Fourier series with a

limited number of terms to each replicate. The interaction of rows by

columns, or of replicates by periods, is then subdivided into as many parts

as may be needed to remove the systematic difference between the trend

in each series and the mean trend. In this way we may separate the com-

posite interaction into cyclic trends and residual error. The same argument

holds, of course, whether replicates represent successive cycles, such as the

years in Table 2, or sampling locations as in Appendix Table 1 . The more

nearly these separate curves define the periodic trend in each replicate

with the fewest terms, the more nearly will the residual error provide an

unbiassed estimate of the random error.

With an orthogonal design, the calculation is very similar to that for

randomized blocks. The sum of squares between the f totals T^ for repli-

cates, representing successive complete cycles or different locations, cor-

responds to variation in the statistic a„ of our separately fitted series. When
these totals suggest a trend, we may wish to isolate its linear and quadratic

terms to test its form and significance. The sum of squares between the k
totals Tt for each interval within the cycle may be subdivided progressively,

beginning with ai and bi for the first harmonic with two degrees of free-

dom, and following with the second and higher harmonics from the Fourier

series, until the scatter about the fitted curve contains no element which

we can isolate with profit.

The remaining sum of squares, the interaction of replicates by measured

intervals within the cycle, includes not only the random error but also the

variation from replicate to replicate of each harmonic in the Fourier series,

in so far as these represent systematic rather than random deviations. The
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differences between cycles in the first harmonic, with 2(f-l) degrees of

freedom, almost certainly should be isolated and tested. In deciding how

much farther to partition the interaction, our most useful guide, when

available, is the theoretical or expected variance, with which we can com-

pare each mean square. In its absence, we may subdivide the interaction

into as many additional terms of the Fourier as have proved useful in

fitting the means of all replicates. This rule is rough at best, since a sig-

nificant higher term may repeat itself so consistently in all replicates that

it will not remove a systematic component from the interaction. Alter-

natively, systematic trends in the individual cycles, corresponding to the

second or higher harmonic, may cancel one another when averaged over

all replicates.

Mathematical model

These relations may be reduced to more concrete terms by an explicit

mathematical model. A single variate occurring in the i^'' year (or replicate)

and the j"' month (or interval) is potentially the sum of a number of ele-

ments. An element with a subscript i has the same value through a given

year but may vary from year to year; an element with a subscript j has a

fixed value for a given month but may vary from month to month; an

element with both subscripts is specific for a given month and year. With

this notation each individual variate y^ may consist of the following terms

Yu = (m + rO + (ai+a/i)uij + (i8i+b/i)vij + (a2+a2'i)u.j

+ 082+b/Ovoj + tj +eij (10)

where the Latin and Greek terms in parentheses correspond to the ex-

pectations for the successive statistics of the two-term Fourier curve in

Equation 9 for the year i, and (tj + e^) represents the difference between

the observed value y^ and its expectations Yjj. Greek letters stand for the

expected values of the same curve fitted to the monthly means over all

years or replicates, tj is the difference between the observed and expected

mean for a given month (or other interval), and eg- is the inescapable nor-

mal random component.

Our null hypothesis is that each intermediate element in Equation 10

(except the cosines and sines) is zero, which, if true, would then reduce

to Yu = f^
-{- Cij. If a single two-term Fourier equation, estimated from the

total Tt for each month (or other interval), were to describe the phenomena
adequately, our model would simplify to

yy = ^ + aiUij -h ^iV,j + a,Uoj + /3,Voj + Cy

all other elements being indistinguishable from a true value of zero. A
significant variation of the monthly means about this curve would require
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the term tj, which might represent a third or higher term in the Fourier

series or discrepancies common to each rephcate year from some other

source. All remaining elements, with subscripts i, measure the differences

from year to year (or replicate to replicate) in successive terms of the

Fourier equation.

Calculation

When the elements in Equation 10 are rearranged in the order in which

their variation is isolated in successive rows of the analysis of variance,

we have

YU = /^ + Ti + (a,U,j+/:?,V,j) + (a,U.j4-^,.V,j) + tj

Row 9 1 2 3 4 (11)

+ (a/iU,j+b/iVii) + (a/iU,.j+b/iV.j) + Cij

5 6 7

Separate sums of squares are attributable to the unique combinations of

these elements enclosed by parentheses in Equation 11, the number beneath

each term identifying the row in the analysis of variance. Their practical

calculation is outlined in the workform of Table 3, which may be reduced

to that for a sine curve by omitting rows 3 and 6, or extended with addi-

tional Fourier terms. Square brackets
[ ] designate the sum of the

squares or products of the factors they enclose measured from their re-

spective means as the origin, i.e. [y^] = 2(y—y)- = 2y- — 2^y/fk, or cor-

respondingly [uiy] = 2{(ui— 111) (y—y) } = 2(uiy) since Sui = 0. Its

other symbols are defined above, in the workform or in Equations 7 and 8.

For each sum of products the identity, 2[U]y] = [uiTt], provides a useful

check on the arithmetic, which holds similarly for the products with V],

U2, V2, etc. The sum of squares in each row, designated as Si to Sn, is

divided by its degrees of freedom (DF) to obtain the corresponding mean
square (MS).

When a given pair of coefficients, ai and b;, varies significantly between

replicate curves, its harmonic may differ in amplitude, in phase, or in both.

Since amplitude and phase angle are computed from non-linear combina-

tions of ai and bi, their relative contributions to the sum of squares in

row 5 or 6 cannot be separated orthogonally. However, if we disregard

phase, we can estimate the total variation in amplitude from replicate to

replicate in terms of a single y- from ^k2(A— A)-, where A is the semi-

amplitude of a given harmonic in a single replicate (Equation 7) and A
that for the same harmonic in the average curve (Equation 8). For the

first harmonic this reduces algebraically to the sum of squares defined in

row 10 of Table 3. The difference between this sum of squares and that
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in row 5, S.-,— Si,, = Sn, we may attribute to differences in phase. A sig-

nificant variation in the second harmonic in row 6 can be subdivided

similarly.

Table 4. Variance components for the expectations of the mean squares (MS) in

Table 4, where each MS = Si/DF.

Row Expected mean square

1 a, + kar

2 a'~ + ik(ar+ br), + for + ikf(ar+ /3r)

3 o' + ik(a,r + b,r ). + fa.-' + \ki{ar + tir)

4 a' + for

5 a'~ + ik(a,=+ br).

6 c- + ik(a,r + b,r ).

7 a~

Tests of significance

From our model in Equation 11, the mean square in each row of the

analysis of variance contains potentially the variance components in Table

4, on the assumption that each source of variation about the average

Fourier curve can be considered a random variable. Replicates, for ex-

ample, are assumed to be equivalent to a random sample of complete

cycles, and the variation of replicates by each term in the Fourier series

to represent similarly a random selection. We will further assume that any

correlation between successive observations within a replicate is removed

in the interaction of replicates by ai and bi and by a2 and bo in rows 5

and 6 of Table 3, where the effect of each pair of coefficients is symbolized

as"(ai+bi)", "(ao+bo)", etc.

Under these assumptions, the variance components are essentially the

same as those for other replicated regressions, whether linear, curvilinear

or harmonic. The components for regression from ai and b; in Equation 1

1

are designated as a»- and b*- in Table 4 and converted to units of y- by the

factor Ik =^ Sui- = Svr. The variance components <r- with subscripts for

replicates (r) and time (t) are already in units of y-, as is the random

variance a- which recurs in each MS and may be an undivided composite.

The error variance for a test of significance or a measure of precision

depends upon which of the relevant components in Table 4 differ effective-

ly from zero. It may be a single mean square or a linear combination of

variances, and will frequently be designated as s'-. When testing the null

hypothesis that the additional component is zero in the mean square Vi in
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row i = 1, 4, 5 or 6, the appropriate s- is V;. The significance of each

observed F := Vi V7 is determined by reference to a table of F or the

variance ratio, such as that given by Fisher and Yates (1957) or by Pearson

and Hartley (1954). If the mean square for scatter about the fitted average

curve in row 4, for example, is significantly larger than that for the residual

variation in row 7, we would conclude that the deviations about the repli-

cate curves have a common element.

An F test of the Greek coefficients in rows 2 and 3 is more involved. If

the scatter in row 4 or the interaction in row 5 or 6 should prove less

than or negligibly larger than the random error, its component would drop

out of the sum in row 2 or 3 of Table 4, and the remaining components

would determine which single mean square is the appropriate error. When
both the scatter in row 4 and the interaction of the first or second harmonic

with replicates are significant, the appropriate error is a linear combina-

tion of the mean squares (Vi) in three different rows (Anderson and Ban-

croft, 1952). For the effect of (ai + bi), the error is s^ = V4 + V., — V7

with approximately n' degrees of freedom, estimated as

(V4 + V5 - V^)^

(V4Vn4) + (VsVns) + (Vr/n-)
(12)

For an approximate test of significance, we refer

F = Vo/(V4+V5-Vr) (13)

to a table of the variance ratio (F) with ni = 2 and no = n' degrees of

freedom. Similarly, for the second term in the Fourier series the error is

s^ = V4 -f- Vg — V7, with F' and n' determined by Equations 12 and 13,

replacing subscript 5 by subscript 6.

Examples

The analysis of variance in Table 5 has been computed from the monthly

mean temperatures at New Haven in Table 2. An inspection of the yearly

or replicate totals reveals no obvious trend, except possibly for a series of

warmer years in the middle of this 14-year period. Since a parabola fitted

to the Tj.'s (not shown here) did not approach significance, we will con-

sider the differences in T^ a random variable. Their mean square Vi ex-

ceeds the interaction V7 significantly (P < 0.02). The sine curve for the

monthly totals (Tt) accounts for 96.9% of the total sum of squares and

is obviously highly significant. Although the mean square for the second

term in the Fourier series, (a^ + bo), is larger than the scatter around the

two-term Fourier curve, its error depends upon the significance of the

mean squares in rows 4 and 6.
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Table 5. Analysis of variance of the monthly mean temperatures

at New Haven, Conn., in Table 2.

Row Term DF SS MS F

1 Between years 13 138.95 10.689 2.19

2 Months, effect of (ai+bi) 2 38026.32* 19013.160 1695

3 effect of (a, + b:;) 2 40.07 20.035 2.20

4 scatter 7 57.76* 8.252 1.69

5 Years X Month (ai + bi) 26 291.71 11.220 2.29

6 " X " (a. + bO 26 237.17 9.122 1.87

7 X " scatter 91 445.08 4.891

8 Total 167 39237.06

9 Correction, Cm 1 432958.44

10 Year X Amplitudei 13 165.55 12.735 2.60

11 Year X Phasei 13 126.16 9.705 1.98

12 Year X Amplitude^ 13 132.05 10.158 2.08

13 Year X Phase. 13 105.12 8.086 1.65

* When recomputed with 2ui" = Svi" = 5.999824 instead of their expectations,

ik = 6, these SS were corrected to 38027.43 and 56.64 respectively, no others

differing by more than 0.01.

When compared with the interaction V7, both the first and second

Fourier terms varied significantly from year to year, but the scatter about

the average curve in row 4 fell within the acceptable range. This last result

is in line with Craddock's finding (1955) that temperature records in the

northern hemisphere agree quite generally with a two-term Fourier series.

Both the scatter in row 4 and its interaction with years in row 7 might

have been subdivided by adding a third term to the Fourier series, as in

fact was done, but without a significant reduction in the remaining mean
squares. Since V4 is not significant, we may retain our null hypothesis

that its variance component a^ is zero, and compare the mean squares

from the first and second terms in the Fourier curve for the 14-year

average with their respective interactions by years. For (a^ + b2), we have

F = 20.305/9.122 = 2.20, which is not significant.

To separate the differences in amplitude and in phase, the variations of

the Fourier curve from year to year in rows 5 and 6 have been subdivided

in the last four rows of Table 5. These indicate that for both the first and

second harmonic, the amplitude or annual range differed somewhat more

from year to year than the phase or date of the maximum. The variation

in the mean monthly temperature will be considered later in more detail.
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Table 6. Analysis of variance of the average monthly iodine values

in Appendix Table 1.

19

Row Term DF SS MS F F'

1 Place 4 65.8543 16.4636 141.20

2 Months, (a,+b,) 2 94.9890 47.4945 18.56t

3
"

(a. + b..) 2 9.3625 4.6812 6.65tt

3' "
(a. + ba) 2 18.2217 9.1108 17.74

4
"

scatter 5 2.5673 .5135 4.40

5 Place X Month (a, + b,) 8 17.2916 2.1614 18.54

6
" X " (a. + bO 8 2.4569 .3071 2.63

7
" X " scatter 28 3.2652 .1166

10 Place X Amplitudei 4 5.0955 1.2739 10.93

11
" X Phasei 4 12.1961 3.0490 26.15

ts- = 2.5583, n' = 10.27; ft s= = 0.7040, n' 7.62.

From the analysis in Table 6 of the iodine values in Appendix Table 1,

the three-term Fourier curve accounts for 97.9% of the variation between

the monthly totals; there would be little point in adding more terms to the

series. The five creameries or replicates differed very significantly in their

means and in the first harmonic (ai -\- bi). When the latter (row 5) was

subdivided between amplitude and phase (rows 10 and 11), differences in

phase proved the more important. The interaction of place with the third

and higher terms proved so nearly equal that they have been pooled in

estimating the random error in row 7. From its variance components, the

error for testing (aa+ ba) in row 3' is the mean square in row 4. Since all

random components in the mean squares for (ai-j-bi) and {a.-i-^-^-i) are

significant, each is tested in terms of F'. For the first term, F' = 47.4945/

(0.5135 + 2.1614 - 0.1166) = 18.56 and the divisor (2.5583) has ap-

proximately n' = 2.5583-/(0.5135V5 + 2.1614-/8 + 0.1166-/28) —
10.27 degrees of freedom by Equation 10, and for the second term F' =
6.65 with n' = 7.62. All three terms of the curve plotted in Figure 4 are

clearly significant.

A systematic trend from replicate to replicate may be illustrated by the

progressive change in the standing electrical potential (Burr, 1945) of an

elm tree, which varies diurnally. The hourly potentials, as read from the

daily record for eight three-day periods from August 1 to 25, 1953, have

been coded in Appendix Table 2 for ease of analysis. The hourly means

(in code) have been fitted with the two-term Fourier curve (Equation 9):

Y = 49.964 - 6.605ui - 15.084vi + 1.357u2 + 1.146v2
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Decoded, the estimated average potential for each hour is

Y' = -66.654 + 2.202ui + 5.028vi - 0.452u, ~ 0.382v,

which has been plotted as the solid curve of Figure 5. Except for a slight

flattening at the upper and lower limits, as if limited by maximal and

minimal potentials, the fit seems very good; how good we can determine

from the analysis of variance in Table 7.
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Figure 5. Mean hourly potentials in an elm tree fitted with a two-term

Fourier curve (solid line) and with a sine curve (broken line), from Ap-

pendix Table 2.

Over this period of 25 days, the average potentials, all initially negative,

decreased progressively, as indicated by the rise in T^ in Appendix Table 2.

In consequence, the variation between replicates has been subdivided into

a highly significant linear trend and the scatter about this trend, in rows

1 and r, with the latter still much greater than the random error in row 7.

This trend was succeeded toward the end of the month by a drastic change

in the diurnal pattern, possibly in response to the prolonged dry spell in

that August.

Since the mean squares for both the first and second Fourier terms are

so much larger than the remaining variation between the hourly means

(row 4), the two-term Fourier curve seems to fit the plotted points in

Figure 5 better than the simpler dotted sine curve. However, the interaction

of replicates by the first and by the second term both exceed the residual

variation so considerably that the significance of the mean squares in rows

2 and 3 must be tested by F'. By this criterion, the first term or sine curve
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Table 7. Analysis of variance of the tree potentials for the eight 3-day periods

in Appendix Table 2.

Row Variance due to DF ss MS F, F'

1 Linear trend on periods 1 20259.80 20259.796 21.37

1' Scatter about trend 6 5687.82 947.971 176.33

2 Hours, (ai + bi) 2 26030.12 13015.062 66.17t

3 (a. + b.>) 2 302.80 151.398 1.78tt

4 " scatter 19 297.20 15.642 2.91

5 Period X Hour (ai + bi) 14 2609.93 186.424 34.68

6 X " (a^+bO 14 1048.06 74.861 13.92

7 X " scatter 133 715.01 5.376

8 Total 191 56950.74

10 Period X Amplitude, 7 1822.73 260.390 48.44

11 X Phase. 7 787.20 112.457 20.92

Ts- 196.690, n' = 15.50; ft s= = 85.127, n' = 17.53.

is highly significant but not the second term (F' = 1.78, P =^ 0.20). De-

spite its apparently better fit, the more complex curve offers no real ad-

vantage in describing the average diurnal variation in tree potential. As
judged from Table 7, in studying the relation between the daily tree poten-

tials and environmental factors, such as temperature, cloudiness, soil

moisture and humidity, the hourly readings for each day might well be

replaced by the first five constants in a Fourier series (a^, ai, bi, ao and b2)

and these used as the dependent variables in a comprehensive analysis.

Transformations of the Variate

In meeting the assumptions of the analysis of variance, the adoption of a

suitable unit for the response is often critical. An unsuitable original meas-

urement or count can often be transformed to a unit which is either addi-

tive or has a variance independent of the mean. In fulfilling one require-

ment we frequently meet or approximate the other assumptions in the

analysis of variance, and in some cases acquire an expected variance, with

which the observed variation can be compared.

Sometimes the transformation can be based upon past experience with

the variate or upon a biological relation. Thus, if we expect our measure-

ment to change proportionately or percentagewise with time, such as the in-

cidence of a contagious disease, the appropriate unit would be the loga-
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rithm of the incidence. If the initial variable is the number of occurrences

or individuals in each unit of time, its distribution, apart from the periodic

effect, may well be Poisson. The expected variance of each Poisson count

is its unknown population mean, but the appropriate transform, the square

root of each count, has a constant variance of 0.25. Our data may be

binomial percentages which can be assumed to measure indirectly an un-

derlying threshold response, some function of which is normally distributed

in the biological population. The additive transform is then the probit, or

the unit, usually the logarithm, to which the probit is linearly related.

Log-transforms

Since the logarithms of many biological measurements are normally

distributed, the logarithmic transformation should be of equal value in

periodic regressions, such as of contagious diseases in animals and plants.

An example from man is the seasonal variation in the death rate from

pneumonia, as recorded in the monthly reports of the Metropolitan Life

Insurance Company (1945-1955). The month of September, when deaths

are near a minimum, has been selected here as the starting time (tj for

each annual cycle in Appendix Table 3, where each monthly rate per

100,000 has been transformed to its logarithm, a unit which stabilizes the

variance through the year. The log-death rates for September 1945 through

December 1949, when deaths were classified by the 5th Revision of the

International List of Causes of Death, have been adjusted here to conform

with the 6th Revision used subsequently by subtracting from each earlier

Figure 6. Mean monthly log-death rates from pneumonia and fitted sine

curve, from Appendix Table 3.
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log-death rate the mean difference (0.235) during the twelve months of

1950 when both criteria were reported.

The sine curve, Y = 1.2087 — 0.1647ui + 0.0535vi, has been com-

puted with Equation 8 from the monthly totals Tt and plotted in Figure 6.

By Equation 4 the seasonal range in the mean log-death rate is more than

two-fold, 2A = 0.3464 = log(2.220). By Equation 5 and Figure 2, its

maximum at tan 0' = 0.32507 and phase angle 6 = 2.8273 radians, cor-

responds to 5.400 months from the starting point of each annual cycle in

mid-September. This places the maximum death rate at approximately

February 25 and the minimum six months later.

Table 8. Analysis of variance of the log-death rates from pneumonia

in Appendix Table 3.

Row Term DF SS MS F, F'

1 Years, trend on x, 1 .80964 .80964 246.09

r trend on x, 1 .06494 .06494 19.74

1" " scatter 7 .02303 .00329 1.52

2 Months, (a, +b,) 2 1.79995 .89998 107.83t

3 (a. + b._.) 2 .00445 .00223 0.25tt

4 " scatter 7 .03650 .00521 2.40

5 Years X Month (ai + bi) 18 .09540 .00530 2.44

6 " X " (a. + b.) 18 .10607 .00589 2.72

7 " X " scatter 63 .13662 .00217

10 Year X A. 9 .06990 .00777 3.58

11 " X Phase.. 9 .02550 .00283 1.31

12 " X A. 9 .07347 .00816 3.76

13 " X Phase. 9 .03260 .00362 1.67

is- = 0.008346, n' = 12.6; ft s= = 0.008939, n' = 13.6.

The progressive decrease in the yearly totals (T^) (Appendix Table 3)

has been fitted with the linear and quadratic orthogonal polynominals, Xi

and X2, for a series of 10 (Fisher and Yates, 1957). This parabola accounts

effectively (97.4%) for the trend between years, as judged from rows

1 to 1" of the analysis of variance (Table 8). A similar proportion (97.8%)

of the sum of squares between the monthly totals (Tt) is absorbed by the

harmonic coefficients ai and bj. Since the mean square for the second

harmonic is less than that for the remaining scatter, little would be gained

by adding more terms.
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The variation from year to year in both of the first two harmonics ex-

ceeds the remaining interaction with years significantly, despite the disap-

pearance of the 2nd harmonic from the average curve. When isolated from

the residual sum of squares in row 7, the mean squares for the higher

terms decreased progressively, but in the absence of an expected error

variance with which to compare them, they have been pooled in the

analysis. As judged from the last four rows in Table 8, the first two

harmonics were considerably more stable in phase from year to year than

in amplitude.

Figure 7. Mean monthly log-incidence of poliomyelitis in the United States

with two-term Fourier curve, from Appendix Table 4.

A similar analysis of another contagious disease with a marked seasonal

incidence, poliomyelitis, reveals a different pattern. The U. S. monthly

incidences per million have beei changed to logarithms in Appendix

Table 4 (Serfling and Sherman, 1953, 1958) and analyzed in Table 9.

Although a parabola accounts for niuch of the overall difference between

years (T^), the scatter about tKi^ treiid (row 1") is here far larger than

that about the annual curves (re ' ' ). Instead of a simple sine curve, the

monthly totals (Tt) define the two-term Fourier curve in Figure 7, with

both terms significant and the equdion

Y = 1.8517 - 0.6397ui + 0.4161vi - 0.0252u2 - 0.0861v,

This increases in 24 weeks from a minimum, approximately on March 23,

to a peak 35 times as great on '^'^.ptember 7, and then returns in the fol-

lowing 28 weeks to its minimum. Here the variation in both terms from

year to year is about equally distributed between amplitude and phase.
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Table 9. Analysis of variance of seasonal incidence of poliomyelitis

in Appendix Table 4.

Row Term DF SS MS F, F'

1 Years, linear trend 1 3.49183 3.49183 10.34

1' " quadratic curv. 1 2.86902 2.86902 8.49

1" " scatter 12 4.05418 .33785 94.45

2 Months, (ai+bi) 2 52.40486 26.20243 377.83t

3 (a.+b.) 2 .72484 .36242 11.55tt

4 " scatter 7 .14494 .02071 5.79

5 Years X Month (ai + b,) 28 1.46223 .05222 14.60

6 " X " (a. + bO 28 .39758 .01420 3.97

7 X " scatter 98 .35051 .00358

8 Total 179 65.89999

10 Years X Amplitudci 14 .71986 .05142 14.37

11 " X Phase. 14 .74237 .05303 14.82

12 " X Amplitude, 14 .19934 .01424 3.98

13 " X Phase. 14 .19824 .01416 3.96

ts== = 0.06935, n' = 30.29; ft s= 0.03137, n' 14.35.

Square root transform
\

The advantages of a theoretical error term are evident in the square root

transformation for a Poisson variate. Data on the number of normal human
births per hour have been assembled b} King (1956) from the records of

five hospitals, the two with the fewest oirths having been combined in

Appendix Table 5 into a single series \A). If the number of births per

hour within each series had varied enti^^tly at random, we would expect

its 24 values to follow the Poisson dictribution and its variance to equal

its mean. Because of differences in the nz^ oi the four series and potentially

in the hour of birth, the variance has been stabilized by transforming

each number of births, ranging from 153 to 508, to its square root (Bart-

lett, 1936). The hourly means have been plotted in Figure 8 and fitted

with the sine curve, Y = 18.3542 + 0.1085ui + 1.3615vi.

The adequacy of a simple sine curve has been tested by the analysis of

variance in Table 10 of the transformed variates y. If our Poisson hypo-

thesis is correct, the mean square for errt". in row 7, s- = 0.242 with 63

degrees of freedom, should not differ significantly from its expectation

0.25. Since the agreement is excellent, each sum of squares for which s^
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Figure 8. Mean hourly incidence of births in five hospitals and sine curve,

from Appendix Table 5.

serves as the error becomes a x" when divided by 0.25 and has the same

number of degrees of freedom as before.

The average sine curve in Figure 8 accounts for 89.9% of the variation

in the means, with the highest birth rate at 6:12 a.m. Although the re-

maining scatter is significant (x" = 40.42, P — 0.007), it would not be

reduced appreciably by adding the second term in a Fourier series. Sepa-

rate sine curves for the four series also differed significantly, primarily in

Table 10. Analysis of variance of the hourly frequency of human births

in Appendix Table 5; x" = SS/0.25.

Row Term DF SS MS x" P

I Between series 3 750.1977 250.0659 3000.79 <.001

2 Hours, effect of (a,+b,) 2 89.5420 44.7710t <.001

4 scatter 21 10.1042 .4812 40.42 .007

5 Series X Hour (a,+b,) 6 7.2891 1.2148 29.16 <.001

7 X " scatter 63 15.2561 .2422 61.02 .55

8 Total 95 872.3891

10 Series X Amplitudei 3 5.3943 1.7981 21.48 <.001

11 X Phasei 3 1.8948 .6316 7.58 .055

tF' 44.7710/1.4538 = 30.80, n, == 2, n' = 8.2.
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amplitude and relatively little in phase. The larger deviations in birth time,

or its recording, in row 4 tend to recur in all four series, due in part. King

suggests, to similarities in hospital routine. Thus the recording of births

may be delayed by the nurses' conference between 7 and 8 a.m. when the

staff changes, and the balanced low and high points in the hours starting

at 3 and 4 and at 7 and 8 p.m. may have similar explanations. This loca-

tion of observation periods when the recording may be at fault is another

advantage of periodic regression. Because of the significant variance com-

ponents in rows 4 and 5, the critical test for (ai + bi) in the average sine

curve is F' = 30.80 with an error variance of s- = 1.4538 (n' = 8.19)

andP < 0.001.

Prob it transform

In biossays of toxicants, such as insecticides or fungicides, and of drugs,

the susceptibility of the test organism varies so commonly and usually so

unpredictably that a reference or Standard preparation is almost invariably

tested concurrently with the sample or Unknown. The variation in sus-

ceptibility may be so large, however, as to complicate the selection of a

suitable range of dosage levels, especially when the response is a binomial

percentage. In an extreme example, the same series of fungicidal concen-

trations might kill all test spores at one season and none at another. In

either case the experiment would be valueless as an assay. If the spore

susceptibility were to vary predictably through the year, the concentra-

tions could be so adjusted as to obtain on each occasion an adequate num-

ber of intermediate mortalities between and 100 percent. A response in

which the seasonal variation has been studied systematically is that of the

toad Bufo arenarum to chorionic gonadotrophin (Penhos et al, 1954). For

two years 40 male toads were collected in the field on the first of each

month and on the following day injected in four lots each of 10 toads

with the same four dosage levels of the International Standard. The num-
ber of individuals in each lot which reacted positively, by releasing sperm,

is recorded in Table 1 1 . Not more than one dose in each test produced a

reaction of either or 100 percent.

Our problem is to predict from these data the response to be expected

at each dosage level in each month of the year. As an all-or-none reaction,

we would expect the probit for each percentage to be linearly related to

the logarithm of the dose, as indeed proved true. The first step, therefore,

was to convert each percentage between zero and 100 to its empirical

probit, and to estimate the provisional slope b = 5.27 from these values

on the assumption that all 24 curves are parallel. From these parallel pre-

liminary curves a provisional expected probit could be estimated for each

lot in which none or all of the toads reacted, and then by suitable tables'
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Table 1 1. Number of toads, Biifo arenarum, in each group of 10 reacting positively

to four different doses of chorionic gonadotrophin measured in international units

per animal, and the log-ED50 computed from each test and from the average sine

curve. (Penhos et al, 1954)

1951-52 1952-53 Log-ED50

Month No.( + ) at dose Log- No.( + ) at dose Log- from

40 30 22.5 15 ED50 40 30 22.5 15 ED50 sine curve

Nov 10 8 7 3 1.272 10 9 6 2 1.288 1.318

Dec 9 7 5 2 1.358 9 7 6 3 1.325 1.353

Jan 8 6 4 2 1.404 7 5 3 1 1.471 1.402

Feb 7 5 4 1 1.452 8 6 4 1 1.420 1.453

Mar 7 5 3 1 1.464 6 3 2 1.552 1.492

Apr 7 4 3 1.502 8 6 2 1.471 1.508

May 9 2 1 1.536 8 4 1 1.520 1.498

Jun 9 5 4 1 1.420 3 5 4 1 1.437 1.464

Jul 9 6 4 1 1.405 9 6 3 1.439 1.415

Aug 10 7 4 2 1.353 9 7 3 2 1.388 1.364

Sep 10 8 5 3 1.304 10 7 4 2 1.356 1.325

Oct 10 8 5 2 1.322 10 8 4 2 1.339 1.308

(Fisher and Yates, 1957) its corresponding working probit. This com-

pletes the set of 24 probits at each of the four dosage levels, their sums

leading to a new unweighted provisional slope of b == 5.704. From the

sums of the 8 probits for each of the 12 calendar months, a sine curve

could be computed by Equation 8 for predicting the mean probit in each

month as Y =r 4.9751 + 0.5327ui — 0.2693vi. With the provisional b

and Y it was a simple matter to calculate the expected probit for each of

the four dosage levels in each calendar month. These determine the weight-

ing coefficients w and, with the observed proportion of positive reactions in

each lot, the working probits y for computing the maximum likelihood

estimates of the 24 curves. (Bliss, 1952; Finney, 1952)

The variation in y about the 24 t^eparately computed curves was well

within the sampling error, 2x" = 15.84 for 38 degrees of freedom. When
tested for differences in slope, the curves proved satisfactorily parallel

(xi,^ = 4.28, n = 23) with a combined slope of b,. = 5.4724. Given this

slope and for each curve its weighted mean log-dose x and probit y, the

ED50 in logarithms has been determined for each month as listed in the

Table 1 1 . The sums of the replicate responses in the two years were then

fitted with the single sine curve

Log-ED50 = 1.4083 - 0.08987ut + 0.04462vi
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with which the expectations in the last column of Table 1 1 have been

determined. The computed curve and the observed log-ED50 for each

month have been plotted in Figure 9.

In an analysis of variance, the log-ED50's for the two years, agreed in

their annual means, in their separately fitted sine curves, and in the random

scatter about these curves. An expected variance was then determined for

each log-ED50 from the sum of the weights (2w) for its log-dose probit

curve and the square of the difference, (y— 5)-. These varied by less than

7 percent so that an average variance, o-'- = 0.001795, could be based

upon two means, 2w = 18.775 and (5—}')- = 0.06742, from the internal

evidence of the separate monthly determinations. With this expected error

variance, the total sum of squares about the average sine curve (from

the analysis of variance of the log-ED50's) could be converted to x" ==

0.023881/0.001795 = 13.31 with 21 degrees of freedom.

I I I I I I I I I I I I I I I I I I I I

"^N DJFMAMJJ ASONDJ FMAMJJ ASO
1952 1953

Figure 9. Log-ED50 for gonadotroph in in toads in 24 successive months

and annual sine curve, from Table 11.

The observations in Table 1 1 agree so well with our mathematical model

that the three constants in the sine curve plus the combined slope b provide

an adequate description of the response of this species to gonadotrophin

through the two years of the experiment. Indeed, the three main sources

of variation — of the working probits y about the 24 straight lines, be-

tween the slopes of these lines, and of the log-ED50's about the sine

curve — all had smaller x''s than would be expected binomially and were

consistent with one another. When totalled over all sources, 2x^ = 33.425

with approximately 82 degrees of freedom, after allowing for each probit

with an expectation of less than 0.5 positive or negative response. The
probability for so small a combined x% P < 0.000,001, is well outside the

range attributable to our initial hypothesis of simple binomial variation.

The seeming paradox can probably be traced to differences in the in-

herent sensitivity of the field-collected experimental animals. If on a given

day these represented several collecting points with unequal thresholds of
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response, and if the toads from each location were assigned equally or at

random to four test groups, each group of n toads would be a mixture

from several populations of sensitivity. For a given dose of hormone, the

mean of the p's for the different populations would have an unbiassed

proportionate response p but, as noted by Kendall (1945), its variance

would be reduced from the binomial npq, as assumed in probit analysis,

to npq — nV(p), where V(p) is the variance in p between populations.

Why this would reduce the observed variance may be illustrated by a

hypothetical extreme case in which half of the toads at a given dose were

collected from a field population of resistant individuals which never re-

acted and the other half from a different source of very susceptible toads

which always reacted. Their combined response would always be exactly

50 percent with a variance of zero.

Adjustment by Covariance

A biological response may be influenced by prior or concomitant variables

which, though measurable, are impossible or impracticable to control. A
climatic factor, for example, is far easier to measure than to control, and

any effect it may have upon a biological response can then be adjusted by

covariance. If the covariate is quite unrelated to the cyclic pattern of the

response or variate, covariance may reduce the experimental error in the

response and strengthen its underlying periodic regression. Alternatively,

the covariate may display periodicities so similar to that of the variate,

that covariance greatly reduces or eliminates the initial periodicity in the

response; it then aids in interpreting the underlying phenomenon. In either

case, the adjustment for the covariate depends primarily upon the linear

regression of the response y upon the covariate x as computed from the

sums of squares [x-] and of products [xy] in the error row of the analysis.

A case in point is the diurnal variation in the heat exchange of cows

reported by Thompson (1954). In an experimental barn under close en-

vironmental control, the average heat exchange was determined in BTU's

per hour for six animals on each of three days. These measurements were

paralleled by a record of the humidity expressed as pounds of water per

pound of dry air, the mixing ratio, on the three days of the test, in all

cases at an average temperature of 50°F. In fitting a sine curve to the

initial data, Thompson noted that the humidities seemed not to follow any

periodic pattern. In Appendix Table 6, the individual observations of

humidity have been coded and the BTU's transformed to logarithms (— 3)

with a gain in consistency.

Three columns of the analysis of covariance in Table 12 are sums of

squares from analyses of variance of the covariate [x-] and of the variate

[y-j, and the corresponding sums of their products [xy] in which the num-
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bers formerly squared are here cross-multiplied, all other operations bemg
identical. Comparisons of the mean squares from rows 2 and 4 show in

the column for [y-] a well-marked sine curve (F = 17.17) in terms of

the heat exchange but in that for [x-J no trace of a sine curve (F = 0.34)

in terms of the mixing ratio. In consequence, the covariate x is here essen-

tially an environmental rather than an explanatory adjustment. The second

term of a Fourier series fitted to the heat exchange proved negligible and

has not been isolated in Table 12. In the error row, representing the inter-

action of days by scatter, the highly significant linear regression of y upon x

(F = 33.65), accounts for 100X0.014303/0.031714 = 45% of the

unadjusted error in the log-BTU, y.

- 3.0 ^

J I I I I
I I I L69 12 369 12 3 6

pni. a m. p m.

2.4

Figure 10. Log-BTU exchange in cows and sine curve for intervals start-

ing at each stated hour, adjusted for differences in relative humidity, from

Appendix Table 6.

After correction for the covariate, the ratio of the reduced mean square

for the average sine curve in row 2 has increased relative to that for scatter

in row 4 (F = 19.57). However, both the scatter in row 4 and the inter-

action of days by (ai -|- bi) in row 5 are so very significant (P < 0.001 )

,

that the appropriate error for the average sine curve is the combination of

the reduced mean squares in rows 4, 5 and 7, s- = 0.001708 -j-0.004332

—0.000425 = 0.005615 with 5.14 degrees of freedom, from which F'

= 5.95 and the true significance of the adjusted curve is P < 0.05. The

hourly means, adjusted for the covariate x with the slope by^ = 0.11068,

have been plotted in Figure 10 with the adjusted sine curve, Y = 0.47793 —
0.00736ui -f 0.04255vi.
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Precision of the Computed Curve

The statistics of the Fourier curve, such as its mean amplitude and phase,

are estimates subject to error. In considering their precision, we will restrict

ourselves to the first harmonic or sine curve. Of the several sources of

variation to which it is subject, the most nearly random is the residual

error about the series of curves fitted separately to each replicate and

designated as a- in Table 4. A second source is the scatter of, say, the

monthly means of the f replicates about the average fitted curve, which

involves the additional variance component at". A third source, the varia-

tion between the sine curves fitted to each replicate, is divided between

the sum of squares for replicate means or totals (a^) with f-1 degrees of

freedom, and that for the interaction of replicates by (ai-j-bi) with 2 (f-1)

degrees of freedom. The replicate means especially may include a system-

atic element which, when segregated, leaves an essentially random com-

posite of (T- and (If, as in the analysis of the tree potentials in Table 7.

For predictions from the average curve to the population of which the

replicate equations are a sample, the error variances for a^ and for the

regression coefficients ai and bi rarely contain quite the same components.

Error terms for each statistic

The error variance of each statistic, as derived by large sample theory,

is in terms of the population variance a\ but in practice is solved with an

estimated s- based upon the mean squares in an analysis of variance. The
statistics a^^, ai and bi in Equation 3 or 6 have error variances similar to

those for linear regression equations. The variance of a^, is

V(a„) = aVN (14)

for N values of the variate y, where our estimate of o-- is usually the mean
square between replicates in an analysis of variance. In common v^th the

linear regression coefficient, the error variance of ai and of bi is a- divided

by the denominator of the coefficient or

V(ax) = V(bi) = trVfSur = 2aVfk (15)

where f is the number of replicates at each of k intervals in the cycle. The
estimate of o-- will depend upon which of the variance components defined

in Table 5 have proved significant in the analysis of variance.

The functions of ai and bi are of as much interest as the coefficients

themselves. One of these, the semi-amplitude A == V^r + bi", can be

shown to have the same variance as the coefficients from which it is com-
puted or

V(A) = (T'/fSui^ = 2crVfk (16)
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These variances are in units of y-. In contrast, the variance of the phase

angle B = bi ai, is in terms of radians squared and is estimated as

W{d) = 2(7-/'fkA- (17)

This can be converted, of course, from radians to units of the original

cycle. The square root of each variance is the standard error of its statistic.

When computing confidence or fiducial limits for a given probability 1— P,

the standard error is multiplied by the corresponding Student's t for the

degrees of freedom n in the estimate of &-.

These estimates of precision may be illustrated with the example in

Appendix Table 2 on the diurnal variation in the standing potential of an

elm tree, which includes a trend. Since each variate y is the sum of the

potentials at a given hour on three successive days, coded by changing

the sign and subtracting 150, reversing the code and dividing by 3 con-

verts each y to the original unit. Each mean square in Table 7 is decoded

by dividing by 3-. Because of the progressive decrease in the average

potential through the period covered by the data, the estimate of a^ and its

error are contingent upon the date for which the equation is to be solved.

For any day (x) from August 1 to 25, 1953, inclusive, our estimate of

the position of each curve is a„ r= —60.359 — 0.4751 x. With this pro-

viso, the variance of a^ is computed with the mean square for the scatter

about the trend, 947.9706/9 = 105.3301 to obtain by Equation 14,

V(a„) = 105.3301/192 = .54859. At the mean date, x = August 13.25,

the standard error of \ is VO-5486 = 0.7407; at any other date its vari-

ance would be increased by the variance of the slope multiplied by (x-x)^.

Whenever the variation in T^ defines a trend, the estimate of a^ is subject

to a similar limitation.

Since the mean squares for both scatter and the interaction of replicate

by (ai+bi) are here significant, the variance of the regression coefficients

ai and bi is a linear combination of three mean squares, s- = (15.6421

+ 186.4238 — 5.3761 )/9 = 21.8544 with 15.50 degrees of freedom

(Equation 12). The regression coefficients, ai = 2.2017 and bi = 5.0279,

and the semi-amplitude, A = V 30. 1275 = 5.4889, have identical vari-

ances: V(ax) = V(bi) = V(A) = 2X21.8544/8X24 = 0.22765, and

a standard error of V 0.22765 = 0.47713.

The tangent of the phase angle can be computed without smoothing

error from the coded numerators for ai and bi as tan 6^ = (— 1448.035)/

(—634.103) = 2.2836. Since bj and ai are both positive after decoding,

6 = 6' and the phase angle is 6 = 1.1580 radians. Multiplying by 24/27r

converts 6 from radians to 24x1.1580/6.2832 = 4.4234 hours, as meas-

ured from our first reading at midnight, which places the maximum poten-

tial at 4:25 a.m. For the variance of 6, we have from Equation 17 and

the variance of a,, V(6) = 0.22765/30.1275 = 0.007556. In terms of
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00

Figure 11. Confidence limits for the coefficients of the sine curve in Figure 5.
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hours the phase angle has a standard error of 24x0.08693/6.2832 =
0.3320.

Each of these standard errors, with approximately 15.50 degrees of free-

dom, is multiplied by Student's t = 2.1255 at P = 0.05 in computing the

95% fiducial or confidence limits. For ai, bi and A, the limits are 2.1255X

0.47713 = 1.0141 above and below each statistic. Their relations are

shown conveniently in Figure 11, where bi has been plotted on the ordinate

against ai on the abscissa, and the clock hours are indicated on the half

circle. When considered independently, the two regression coefficients are

consistent at odds of 19 in 20 with any value of the parameter falling be-

tween the parallel horizontal or vertical lines bounding the point ai,bi.

The corresponding interval for the semi-amplitude, the length of the solid

line from zero to the point ai,bi, is defined by two parallel arcs with their

centers at zero. The time of the maximum tree potential and its limits are

marked by projections to the time scale on the half circle.

Composite tests

In estimating a separate interval for ai and for bi, which would include

its parameter in all but five percent of trials, we would reject their true

values, considered jointly, with a frequency of 100(1 — 0.95-) = 9.75

percent. A more comprehensive approach is provided in Section 64 of

"The Design of Experiments" by R. A. Fisher. If ai and bi are estimates

of the true coefficients ai and ^i, the following inequality holds if the hy-

pothesis is not to be contradicted at the percentage level selected for the

variance ratio F:

(ai-ai)^ + (h,-fi^y ^2FsVikf (18)

where F is the tabular value with Ui = 2 and n2 = the degrees of freedom

in the relevant error variance S". The denominator converts the numerator,

a sum of squares with two degrees of freedom, from units of a single

variate y to that of the regression coefficients ai and bi. Any pair of postu-

lated regression coefficients ai and /3i would be excluded if, in the quad-

ratic form at the left, the differences were to exceed the limiting sum of

squares on the right of the inequality.

All acceptable values of the parameters ai and fti then fall within a circle

centered at the point ai,b], which also defines the joint limits of the true

amplitude and of the true phase angle. Its radius is the square root, of the

right side of the above inequality or \/2Fs-/^kf. For the limits of the

phase angle, the radius of the circle for any given probability is multiplied

by k/7rA to convert it to the scale of k subdivisions in a complete cycle.

The circle enclosing all acceptable parameter values at a selected level of

significance may be drawn in a diagram not unlike Figure 11, and supple-



Periodic Regression 37

mented, if desired, with a series of concentric circles, one for each addi-

tional probability.

For our example on tree potentials, we may obtain indirectly from the

table of z in Fisher and Yates (1957) F = 3.6572 for the 5% point and

F = 11.1471 for the 0.1% point at ni = 2 and no = 15.50. Substituting

F r= 3.6572 in Equation 18, any pair of postulated coefficients a\ and ^i

which does not violate the inequality

(2.2017 - ai)- + (5.0279 - f^x)- ^1.6651

would be admitted at the 5% level by our observations. This pair of values

would fall within a circle with a radius of V 1.6651 =; 1.2904. Substituting

F for the 0.1% level, we would have a larger concentric circle with a

radius of 2.2528. These two circles have been added to Figures 11.

Finer Adjustments

Correction for length of month

In the annual cycles that we have been considering, the variate for each

month has been given equal weight, although months differ in length by as

much as 10%. The month containing the maximum or minimum variate

has been estimated with an "average" month of 1461/48 = 30.4375 days,

and the date within the selected month then based upon its length. In a

paper of the Meteorological Research Committee (London), Craddock

(1955) has provided an adjusted set of multipliers which allows for dif-

ferences in the length of the month. With these multipliers, the coefficients

for a two-term harmonic equation can be computed as readily as with the

orthogonal cosines and sines in Table 1. For computing the corrected ex-

pectations Yp, he provides a second table of the cosines and sines for each

month. Since it is not orthogonal, his equation cannot be reduced immedi-

ately from two terms to one term or extended to a third or higher term as

the data require. For describing the annual course of the mean tempera-

ture in the northern hemisphere, this limitation is negligible, since Crad-

dock has found that a two-term Fourier series applies quite generally.

As an indication of the size of the correction with relatively precise

data, the monthly mean temperatures in Table 2 have been fitted by both

methods. When computed from the totals Tt by Equation 9, weighting each

month equally and with exact values for 2Ui^ and 2Vi^ instead of their ex-

pectations, ^k = 6, we have the two-term harmonic series:

Y = 50.7655 + 20.9898ai + 3.4853bi - 0.1060a. + 0.6825b,

starting with July as t^. The monthly means for this 14-year period y and

their expectations Y from the above equations are listed in Table 13. When
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1'able 13. Comparisons of the observed monthly mean temperatures in New Haven

for 14 years (y) and their predicted values from two-term Fourier equations com-

puted without weighting (Y), with corrections for the length of each month (Yc),

and with the weights w {Y^^) in Table 14.

Observed Unweighted / Difference between met
Month

ins N

y Y y-Y Yc-Y Yw-Y

Jul 72.4357 71.6494 .7863 -.0071 .1765

Aug 70.9286 71.2234 -.2948 .0017 .0077

Sep 64.1357 64.9228 -.7871 .0185 -.1965

Oct 54.8714 54.3568 .5146 .0067 -.2137

Nov 43.4714 42.7508 .7206 -.0265 - .0064

Dec 32.6929 33.6869 -.9940 -.0387 .2358

Jan 29.9214 29.6697 .2517 -.0059 .2806

Feb 31.4571 31.3837 .0734 .0370 .0828

Mar 37.9214 37.8963 .0251 -.0752 -.1702

Apr 47.8000 47.3861 .4139 -.0325 -.2435

May 56.8714 57.7040 -.8326 -.0081 -.0841

Jun 66.6786 66.5560 .1226 - .0054 .1308

2(y-Y)^ = 4.04575, 2(Yc-Y)^ = 0.01085, 2;(Yw--Y)^ = 0.36917

corrected for differences in the length of the successive months but start-

ing in January as t^, we have with Craddock's weighted multipliers the

two-term harmonic equation:

Y, = 50.8623 - 19.7304ai - 8.6060bi - 0.4865a2 + 0.5148b2

The corrected predictions for each month Y,. were then computed with

Craddock's parallel table of cosines and sines and the constant a„ =
50.8623.

The discrepancies (Y^.—Y) may be compared with the deviations

(y—Y) of the observed means from their simpler predictions Y. They

are clearly of a different order of magnitude. Comparing their sums of

squares, lOOSCY^—Y) V2(y—Y)- = 0.27 percent. If this single example

can be considered a reliable indicator, the discrepancy due to computing

the Fourier regression coefficients as if months were equal in length

should be negligible for most purposes.
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Variance homogeneity

A second discrepancy between theory and observation may be traced

to our assumption of equal variability at successive intervals through the

cycle. Climatologists, for example, have long known that the variation in

temperature from year to year in a given locality is greater in winter than

in summer. To the extent that this inequality represents harmonic varia-

tion, either in amplitude or in phase, it should be attributable to differences

between the curves fitted separately to the data for each year. If this ex-

planation were fully effective, the deviations of the observed monthly

means from the fitted annual curves should be of the same magnitude in

each month through the year. The problem is important in predicting the

size of discrepancies from the fitted curve, and in determining the best

estimate of the mean curve over the several replicates.

When comparing the observed temperature in each interval with its

expectation, approximations in curve fitting which are entirely edequate

in an overall analysis may prove troublesome. Sums of the squared in-

dividual deviations may differ from their counterparts in the analysis of

variance in the third and even in the second significant figure due to

apparently negligible rounding errors, especially if the average Fourier

curve absorbs a very large proportion of the total sum of squares. As in

the calculation of a reciprocal matrix, a good numerical check may de-

pend upon carrying what seems initially to be an unreasonable number of

decimal places. An example is our substitution of the true value ,^k for Sur
and SVi" in the denominator of the Fourier coefficients, some of which are

irrational numbers rounded to three decimal places. In a cycle of twelve

subdivisions, this substitutes ^k =r 6 for 2ui- = 2vi- = 5.999824, Suo^ =
6 exactly and 2v2- = 5.999648, the sums of squares of the rounded coef-

ficients. These latter values have been used in the following analysis.

Because the second term in the Fourier series has varied significantly

from year to year, it has been retained in a closer analysis of the monthly

mean temperatures in New Haven in Table 2. As a first step, a separate

two-term Fourier equation (Equation 9) has been computed from the

12 monthly means (y) for each year. Each of these 14 equations was then

solved 12 times, with the Ui and Vj for t = to 11, leading to a table of

predicted means, designated here as y, which parallel the y's in Table 2.

The averages of the 14 y's, one for each month, agreed exacdy with the

Y's in Table 13 computed independently with the two-term equation based

upon the monthly totals of the y's, Tf Each y was then subtracted from

its corresponding observed mean temperature y in Table 2, to obtain the

deviations d = (y—y) in Appendix Table 7. These total zero for each

year, and for each month their average is equal to the difference (y—Y)
in Table 13.



40 Connecticut Experiment Station Bulletin 615

Table 14. Observed monthly variances (per degree of freedom) of New Haven
mean temperatures for (3' — Y)- from the observed means y and their unweighted

predictions Y in Table 13, V(y) from the deviations of the y's in Table 2 frpm their

column means y, V(y) from the deviations (y— y), and V(d) from the deviations

(y— y) in Appendix Table 7; expected standard deviations (SD) from the sine curve

fitted to log-V(y); weights w = antiIog(l — log-V(d) for computing the weighted

two-term Fourier curve Yw in Table 13.

(y-Y)=

- Observed

V(y)

variance from —
V(y)

SD from

log-V(y)
Month

V(d)
w

Jul 14.840 3.538 7.348 2.039 1.683 5.4

Aug 2.087 3.401 7.475 1.309 1.680 4.8

Sep 14.866 2.904 4.162 3.206 1.853 3.5

Oct 6.357 4.564 4.018 5.123 2.197 2.4

Nov 12.465 4.851 10.678 4.805 2.679 1.6

Dec 23.715 12.170 20.887 8.533 3.183 1.2

Jan 1.521 19.450 21.260 12.752 3.519 1.1

Feb .129 11.101 13.342 6.257 3.525 1.3

Mar .015 9.560 11.171 5.670 3.198 1.7

Apr 4.112 5.832 11.388 2.432 2.696 2.6

May 16.636 4.798 6.577 4.291 2.212 3.8

Jun .361 3.440 4.537 2.275 1.861 4.9

Mean 8.092 7.134 10.275 4.891 2.434 34.3

2(DF) 7 156 65 91 = T

Four variances were then determined for each month in units of the

variance of a single monthly temperature y. The average of each series of

variances over the 12 months agreed with its corresponding mean square

from the analysis of variance, in several cases combining sums of squares

that were reported initially in separate rows. The series of variances in

Table 14 have the following composition:

Those from (y—Y)- measure the discrepancy of the observed 14-year

average for each month from that computed with the two-term Fourier

equation for all 14 years, each with 7/12 of a degree of freedom. These

deviations would be absorbed completely by the remaining terms of the

Fourier series if it were extended to the limit.

The empirical variances V(y) = 2(y—y)-/13 represent the variation

of the 14 y's for each month in Table 2 about their observed or column

mean y. They show a marked seasonal trend. Each sum of squares

2(y—y)- with 13 degrees of freedom has been divided into two parts to

obtain the next two series of variances.
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The variances V(y) measure the variation of the predicted y's about

their mean, or that part of the variation in each month which is attributable

to the 14 annual two-term Fourier curves. The average of the V(y)'s with

65 degrees of freedom is equal to the mean of the sums of squares in rows

l-f-5+6 of the analysis of variance (Table 6). These monthly variances,

each with 65/12 = 5.4167 degrees of freedom, absorb part, at least, of

the seasonal trend in the variance.

The variances V(d), averaging less than half of the V(y)'s, represent

our nearest approach to a random error. They have been computed from

the differences d for each month in Appendix Table 7 as V(d) =
122(d— d)-/91, each with 91 ,12 degrees of freedom. Their mean cor-

responds in the analysis of variance to the mean square in row 7. Although

much of the initial seasonal trend in the variance has been absorbed by the

V(y)'s, a substantial amount still persists.

The pattern of the seasonal trend in the empirical variance V(y) and

in its two components in Table 14 may be defined periodically. Since the

distribution of the log-variance is approximately normal (Bartlett, 1947),

the following sine curves have been fitted to their logarithms and plotted

in Fig. 12:

Log-V(y) = 0.7727 -- 0.3203u, - 0.0888v, (s^ = 0.01198)

Log-V(y) = 0.9490 - 0.2585ui - 0.0662vi (s^ = 0.02532)

Log-V(d) = 0.6071 - 0.3384ui + 0.0165vi (s^ = 0.02106)

In no case was the second Fourier term significant. By Equation 4, the

semi-amplitudes (A) of these curves are respectively 0.3324±:0.0119,

0.2668±0.0174, and 0.3392±0.0158. From antilog (2A) for each series,

the smallest expected variance in the mean summer temperature would be

multiplied by a factor of 4.62 for y, 3.42 for y, and 4.77 for d to abtain

the largest winter variance. From the phase angle for each curve, the

variances were maximal on January 31, 30 and 12 respectively.

Weighted periodic curves

The variance of the mean temperature differs sufficiently through the

year from the equality implied in our initial model, that a weighted analy-

sis might be expected to improve our estimate. Appropriate weights would

be the reciprocals of the expected random variance, computed from the

sine curve for log-V(d) as w = antilogarithm of 1 — log-V(d). These

weights, in the last column of Table 14, vary from 1.1 to 5.4 and resemble

the second of the three weighting systems suggested by Craddock (1955)
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1.4

From Cy2a

1.2
-

1.0
-

From Cd2 3

N MJ F M

Month

Figure 12. Seasonal variation in the logarithm of the variances in Table 14,

from [y-] = 2(y — y)" for the overall deviations in the monthly mean tem-

peratures, and from its components [y-] = 2(y — y)" and [d-] = 2(y— y)",

each fitted with a sine curve.

for a similar purpose. The weighted two-term Fourier curve, computed by

partial regression, has the equation:

Y,,. r= 50.7655 + 20.9378ui + 3.5002vi + 0.1226uo + 0.6028v2

When solved with the cosines and sines for each month, the weighted mean

temperatures Y„. differ from the unweighted expected means Y as shown

by the differences (Y^^- Y) in the last column of Table 13.



Periodic Regression 43

The sum of squares from these differences is a considerably larger frac-

tion (9.12%) of 2(y— Y)- than the 0.27 percent for the corresponding

differences (Y^—Y). Although the weighted estimates Y^^. may be superior

theoretically, their curve requires the solution of a reciprocal matrix and

gives considerably more weight to the summer than to the winter tempera-

tures. From a commonsense point of view, one may question whether the

weighted estimates are as satisfactory climatologically as those from the

unweighted Fourier equation, to which each month contributes equally. Is

it wise to base the estimate of the annual curve so largely upon the sum-

mer months?

Normality of temperature deviations

In analyses of variance of periodic regressions we tacitly assume not

only that the random deviations are equally variable at each t but also

that their distribution is normal. Because of the small number of years

in our climatological example, the normality of the deviations d has been

tested graphically. The rankits* for a sample of 14 have been plotted in

Figure 13 against the deviations for each month in Appendix Table 7 in

rank order and each fitted with a straight line. Their slopes are less in

winter than in summer, as would be expected from the seasonal change in

the variance. If the distributions are normal, the plotted points should not

curve systematically from the computed straight lines. To test whether the

trends in Figure 13 cancel out, the deviations may be averaged for each

position over the 12 months (i.e., the largest in each month, the next

largest, etc). The rankits have been plotted against these averages in the

left side of Figure 14 and fitted with a line passing through 0,0 with a

slope of 1/s = 0.5920, where s = V445.070¥7r2xl3 = 1.6891. The

close agreement with a straight line confirms our initial hypothesis that the

variation about the two-term Fourier series for each year is here essentially

normal.

Two aspects of periodic regression need to be distinguished. The first is

the harmonic analysis of periodic data to determine their underlying pat-

tern and the magnitude and nature of the variation to which this pattern

has been exposed. The second problem is that of predicting future re-

sponses from our present data, as is commonly the objective in climatology.

Unless the constants in our fitted Fourier curve for each year were to define

a trend which might be expected to continue, and climatologists are not

agreed upon the existence of these trends, the prediction of future tem-

peratures would have to be based upon the average curve for past years.

* A rankit is the expected mean deviation for each rank in an ordered sample of a given size from
a normal population with a mean of zero and a standard deviation of one (Fisher and Yates,

1957, Table XX).
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The error in our prediction would then involve not only the variation

around the annual curves, which seems to be satisfactorily normal although

not constant, but also the variation of the annual curves about their aver-

age for the series of years. When these two sources of variation are com-

bined, a convenient estimate of the standard deviation for each month in

Deviations y-y in Degrees Falirenheit

Figure 13. Rankit test for agreement of the deviations in the monthly mean
temperature with the normal distribution, from the differences d = (y — y)
in Appendix Table 7.



Periodic Regression 45

°F is SD =.antilogarithm of ^(log-V(y) ) in Table 14, from the equation

of the upper sine curve in Figure 12. There is no assurance a priori, how-

ever, that the composite variation will be distributed normally.

For a graphic test of normality, the deviations (y—Y), which also

include the differences (y—Y), have been computed from the y's in Table

2 and the Y's in Table 13. These were ranked in order for each month

and then averaged over the twelve months to obtain the rankit diagram in

the right side of Figure 14. The plotted points have been fitted with a

straight line passing through 0,0 with a slope of 1/s = 1/2.679. Not only

is the slope much less than that for the deviations about the annual fitted

curves in the left side of the figure, but the points themselves describe a

trend that is less certainly linear.

Meon Deviations from 6- (y-y)

-3 -2-1-0 1 2 3

2

1 1 1 1 1 1 1

9^ o/

/ X
y°

1 / yy
o/
/ /
/ y°

/ ^°

-1

</ o /
- / X

/o

X

2
1 1 1 1 1 1 1 1 1 1

-4 _3 -2 -I I 2 3 4 5

Mean Deviotions from (y-Y)

Figure 14. Test for normality of the ranked deviations (y — y) in Figure 13
average over the 12 months (left curve), compared with a similar diagram of
the average deviations (y — )') from the 14-year means for each month (y).

Despite their limited sensitivity with as few as 14 replicates, the numeri-

cal measures of skewness (gi) and kurtosis (go) have the advantage of

separating these two types of non-normality (Fisher, 1954). Both statistics

are normally distributed about zero with a standard error depending only

upon the size of the sample. They have been computed for each month
from the distribution of the observed temperatures y about their monthly

means y; neither approached significance in any one month or in com-
posite X" tests over all 12 months. On the off chance that a seasonal trend

might still be discernable, separate sine curves have been fitted to the
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twelve monthly values for gi and for go. Neither periodic trend approached

significance (P > 0.20), but their minima and amplitudes may be sug-

gestive. The curve for gi had a minimum in December and an amplitude

of 0.507±0.338, and that for go a minimum in January and an amplitude

of 1.019±0.552. In developing probability statements for the monthly

mean temperature from more extensive data, we may need to consider

not only seasonal changes in the standard deviation about the average two-

term Fourier curve, but also seasonal departures from normality.

Summary

Periodic regression is applied here to cyclic phenomena in biology and

climatology in which ( 1 ) the length of the cycle, such as a year or day, is

determined independently of the response, (2) the observations are spaced

evenly through the cycle, and (3) the number of replicates is constant at

each interval. When the response (y) changes symmetrically through the

cycle, the first harmonic or sine curve is defined by the mean response

(a^) and two orthogonal regression coefficients, ai for the cosine Ui and bi

for the sine Vi, as Y = a„ + aiUi + biVi, from which we can compute its

amplitude and phase angle. When the curve is not symmetrical, the sine

curve can be extended with additional terms for two, three or more cycles

in each fundamental period by classical Fourier analysis until the desired

fit is achieved.

The analysis of variance for deciding how many terms to retain in a

Fourier curve and for determining its error is based upon the mathematical

model for replicated regressions. In effect, a Fourier curve is fitted to each

replicate and the analysis determines in what respects these separate

curves differ from replicate to replicate. Various aspects of the calculation

are illustrated by the monthly mean temperatures in New Haven over a

14-year period, the monthly iodine values of butterfat from five creameries

in Alberta, and the electrical potential of an elm tree in eight three-day

periods in August, 1953.

Both the number of terms in a periodic regression and the validity of

its analysis depend upon the selection of a suitable unit for the response.

The transformation to logarithms is applied to monthly data on two con-

tagious diseases. The square root transformation for counts is illustrated

with data on the hour of birth, where agreement with the assumed Poisson

variation about a diurnal sine curve can be tested by x"- The analysis of

seasonal variation in the log-ED50 for a biocide or a drug is computed

by maximum likelihood from all-or-none data with probits. A periodic

response can be corrected for diflferences in a concomitant environmental

factor by covariance, as illustrated by the adjustment for aperiodic hu-

midity of the diurnal variation in the log-heat exchange of cows in an

experimental barn.
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The precision of the constants for the first harmonic in a periodic re-

gression is considered from two viewpoints. The first defines the variance of

the statistics of a sine curve and the confidence hmits of their parameters

when each statistic is considered separately. The second defines a joint

circular region within which any combination of the parameters for ai and

bi is compatible with our observations at a given probability.

Finer adjustments in periodic regression are examined with the monthly

mean temperatures in New Haven. A correction for differences in the

length of the month proved of minor importance relative to other errors

in fitting a two-term Fourier curve. Seasonal changes in the variance

through the year could be divided into two components, one representing

differences between the observed monthly temperatures and their predic-

tions by annual two-term Fourier curves, and the other differences be-

tween these predicted temperatures and the average two-term Fourier

curve for all 14 years. For each source the log-variance changed periodi-

cally through the year in a sine curve, leading to estimated standard devia-

tions for probability predictions and to weights for recomputing the average

Fourier curve.

A distinction is drawn between two objectives in periodic analysis, that

of locating sources of variation and describing their characteristics, and

forecasting, which must ordinarily be based upon the average over all

replicates because of the unpredictable nature of long term trends. The

summer temperatures contributed proportionately more to the weighted

regression than the winter temperatures, a feature which may be poten-

tially less desirable for climatological predictions than the simpler process

of equal weighting through the year. In graphic tests with rankits, the

approximately random deviations from the yearly two-term Fourier curves

proved to be satisfactorily normal but when these were increased by the

larger differences between the yearly and the average curves, the data

suggest that seasonal departures from normality may modify probability

predictions based upon an average Fourier curve.
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Appendix Table 2. Hourly standing potentials in an elm tree in Lyme, Connecticut,

in August, 1953. (H. S. Burr, 1958)

Hour
1-3

y = -

4-6

-22 (Daily potential) —
8-10 11-13 14-16

150 on

17-19

August

20-22 23-25
Total
Tt

Mt. 23 30 41 38 41 43 50 76 342

1 23 29 39 33 41 42 49 71 327

2 23 24 32 32 36 41 48 68 304

3 20 22 36 31 34 39 46 65 293

4 20 22 36 28 33 38 44 58 279

5 19 22 30 30 32 41 43 57 274

6 20 22 30 28 32 42 42 57 273

7 20 22 32 30 33 42 41 57 277

8 17 31 36 37 37 44 39 57 298

9 20 39 40 49 38 41 41 59 327

10 22 51 44 58 41 50 46 65 377

11 26 53 55 64 52 54 57 75 436

12 32 57 64 69 62 56 65 79 484

1 32 60 69 70 67 58 72 79 507

2 32 63 70 70 63 61 74 79 512

3 35 63 70 70 62 65 74 81 520

4 38 58 70 70 61 66 76 80 519

5 38 58 68 70 60 68 77 80 519

6 38 63 64 70 57 68 77 78 515

7 40 63 60 67 57 67 73 78 505

8 34 57 57 56 53 62 68 78 465

9 35 55 54 51 50 56 64 79 444

10 23 54 51 49 43 49 58 80 407

11 20 54 47 48 41 45 56 78 389

Tr 650 1072 1195 1218 1126 1238 1380 1714 9593
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Appendix Table 5. Number of normal human births in each hour in four hospital

series, transformed to y = vNo. of births. (King, 1956)

y in Hospital ObservedHour V births = Expected

starting A B C D Total y Y

Mt 12 13.56 19.24 20.52 21.14 74.46 18.6150 18.463

AM 1 14.39 18.68 20.37 21.14 74.58 18.6450 18.812

2 14.63 18.89 20.83 21.79 76.14 19.0350 19.129

3 14.97 20.27 21.14 22.54 78.92 19.7300 19.393

4 15.13 20.54 20.98 21.66 78.31 19.5775 19.587

5 14.25 21.38 21.77 22.32 79.72 19.9300 19.697

6 14.14 20.37 20.66 22.47 77.64 19.4100 19.716

7 13.71 19.95 21.17 20.88 75.71 18.9275 19.641

8 14.93 20.62 21.21 22.14 78.90 19.7250 19.479

9 14.21 20.86 21.68 21.86 78.61 19.6525 19.240

10 13.89 20.15 20.37 22.38 76.79 19.1975 18.941

11 13.60 19.54 20.49 20.71 74.34 18.5850 18.602

M 12 12.81 19.52 19.70 20.54 72.57 18.1425 18.246

PM 1 13.27 18.89 18.36 20.66 71.18 17.7950 17.897

2 13.15 18.41 18.87 20.32 70.75 17.6875 17.579

3 12.29 17.55 17.32 19.36 66.52 16.6300 17.315

4 12.92 18.84 18.79 20.02 70.57 17.6425 17.121

5 13.64 17.18 18.55 18.84 68.21 17.0525 17.011

6 13.04 17.20 18.19 20.40 68.83 17.2075 16.993

7 13.00 17.09 17.38 18.44 65.91 16.4775 17.067

8 12.77 18.19 18.41 20.83 70.20 17.5500 17.229

9 12.37 18.41 19.10 21.00 70.88 17.7200 17.468

10 13.45 17.58 19.49 19.57 70.09 17.5225 17.767

11 13.53 18.19 19.10 21.35 72.17 18.0425 18.106

Total 327.65 457.54 474.45 502.36 1762.00 18.3542

2:(uiy) 3.25792 — 3.42395 2.77825 2.59608 5.20830 .10851

2 (vxY) 10.62339 19.04199 20.38840 15.29826 65.35204 1.36150
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Appendix Table 6. Hourly humidity or mixing ratio, x = 2(HjO/dry air) — 0.8,

and average heat exchange per cow, y = log (BTU/10^), in an experimental dairy

barn on 3 days in 1949. (Thompson, 1954)

Hour Mixing ratio, x on Log-BTU y on Adj.

starts 10/11 10/30 11/20 Tt 10/11 10/30 11/20 Tt y

3 pm 1.3 .5 .6 2.4 .512 .407 .423 1.342 .4310

4 1.0 .5 .5 2.0 .484 .415 .447 1.346 .4471

5 1.1 .7 .4 2.2 .550 .512 .462 1.524 .4991

6 .9 .8 .4 2.1 .512 .512 .477 1.501 .4951

7 .8 .7 .6 2.0 .505 .512 .512 1.529 .5044

8 1.0 .4 .6 2.0 .613 .462 .532 1.607 .5341

9 .9 .6 .7 2.2 .607 .498 .525 1.630 .5344

10 1.1 .6 .7 2.4 .623 .505 .505 1.633 .5280

11 .8 .5 .7 2.0 .525 .498 .519 1.542 .5124

12 .9 .4 .5 1.8 .538 .470 .491 1.499 .5055

1 am 1.0 .3 .3 1.6 .550 .470 .484 1.504 .5145

2 .4 .4 .6 1.4 .519 .477 .477 1.473 .5116

3 .4 .2 .3 .9 .532 .431 .498 1.461 .5260

4 .6 .7 .7 2.0 .371 .407 .447 1.225 .4068

5 1.0 .9 .9 2.8 .447 .491 .491 1.429 .4452

6 .9 .5 .7 2.1 .439 .431 .462 1.332 .4387

7 1.2 .7 .5 2.4 .505 .477 .470 1.452 .4677

8 .7 .8 .8 2.3 .415 .477 .491 1.383 .4484

9 .8 .1 .5 1.4 .423 .407 .407 1.237 .4329

10 .5 .7 .4 1.6 .389 .455 .447 1.291 .4435

11 .8 .5 .3 1.6 .398 .439 .423 1.260 .4332

12 .8 .4 .5 1.7 .423 .447 .447 1.317 .4485

1 pm 1.0 .9 .7 2.6 .491 .498 .498 1.487 .4720

2 .6 .4 .4 1.4 .470 .462 .477 1.409 .4902

Tr 20.5 13.2 13.3 47.0 11.841 11.160 11.412 34.413 .4779
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